Spherical normal forms of parabolic fixed-points in $\overline{\mathbb{C}}$

Loïc Teyssier (Université de Strasbourg)

May 13th, 2023

Context

Holomorphic dynamical systems on the Riemann sphere $\overline{\mathbb{C}}$

Context

Holomorphic dynamical systems on the Riemann sphere $\overline{\mathbb{C}}$

$$\mathtt{Julia}\left(z\mapsto z^2+\tfrac{1}{4}\right)$$

Context

Local holomorphic dynamical systems on the Riemann sphere $\overline{\mathbb{C}}$

Dynamics of parabolic fixed-points of germs $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

$$\Delta: z \longmapsto \alpha z + \cdots, \alpha \in \mathbb{C}^{\times}$$

 \square $\alpha \notin \mathbb{S}^1$: locally linearizable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

$$\Delta: z \longmapsto \alpha z + \cdots, \alpha \in \mathbb{C}^{\times}$$

 \square $\alpha \notin \mathbb{S}^1$: locally linearizable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

lacksquare Fatou if |lpha| < 1 (attracting fixed-point)

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $\mathbf{1} \quad \alpha \notin \mathbb{S}^1$: locally linearizable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- lacksquare Fatou if |lpha| < 1 (attracting fixed-point)
- lacksquare Julia if |lpha|>1 (repelling fixed-point)

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $\mathbf{1} \quad \alpha \notin \mathbb{S}^1$: locally linearizable

$$\exists \varphi \in \text{Diff}(\mathbb{C},0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- \blacksquare Fatou if $|\alpha| < 1$ (attracting fixed-point)
- lacksquare Julia if |lpha|>1 (repelling fixed-point)
- $\alpha \in \mathbb{S}^1$:

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $\mathbf{1} \quad \alpha \notin \mathbb{S}^1$: locally linearizable

$$\exists \varphi \in \text{Diff}(\mathbb{C},0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- \blacksquare Fatou if $|\alpha| < 1$ (attracting fixed-point)
- lacksquare Julia if |lpha|>1 (repelling fixed-point)
- $\alpha \in \mathbb{S}^1$:
 - locally linearizable $\iff \Delta$ stable i.e. $\exists U$ neigh. of $0:\Delta(U)\subset U$ \longrightarrow Fatou (Siegel's disks...)

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $\alpha \notin \mathbb{S}^1$: locally linearizable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- \blacksquare Fatou if $|\alpha| < 1$ (attracting fixed-point)
- lacksquare Julia if |lpha|>1 (repelling fixed-point)
- $\alpha \in \mathbb{S}^1$:
 - locally linearizable $\iff \Delta$ stable i.e. $\exists U$ neigh. of $0 : \Delta(U) \subset U$ \longrightarrow Fatou (Siegel's disks...)
 - else: numerous local classes e.g.

$$\{z\mapsto z+\cdots\}/_{\mathrm{Diff}(\mathbb{C},0)}\simeq\bigoplus_{\mathbb{N}}\mathrm{Diff}\left(\mathbb{C},0\right)$$

$$\Delta \in \mathsf{Parab} := \{z \longmapsto z + \cdots\} \setminus \{\mathrm{Id}\}$$

$$\Delta \in \mathsf{Parab} := \{z \longmapsto z + \cdots\} \setminus \{\mathrm{Id}\}$$

Stratification by the order of tangency to Id

$$\Delta \in \mathsf{Parab} := \{ z \longmapsto z + \cdots \} \setminus \{ \mathrm{Id} \}$$

Stratification by the order of tangency to Id

$$\begin{aligned} \mathsf{Parab} &= \coprod_{k \in \mathbb{N}_{>0}} \mathsf{Parab}_k \\ &= \coprod_{k \in \mathbb{N}_{>0}} \left\{ z \longmapsto z + *z^{k+1} + \cdots \;, \; * \in \mathbb{C}^{\times} \right\} \end{aligned}$$

$$\Delta \in \mathsf{Parab} := \{z \longmapsto z + \cdots\} \setminus \{\mathrm{Id}\}$$

Stratification by the order of tangency to Id

$$\begin{aligned} \mathsf{Parab} &= \coprod_{k \in \mathbb{N}_{>0}} \mathsf{Parab}_k \\ &= \coprod_{k \in \mathbb{N}_{>0}} \left\{ z \longmapsto z + *z^{k+1} + \cdots \;, \; * \in \mathbb{C}^\times \right\} \end{aligned}$$

lacksquare $k \geq 1$ topological invariant: number of attracting petals

$$\mathsf{Parab}_k = \mathsf{Parab} \cap \left(\mathsf{Homeo}^+\left(\mathbb{C},0\right)^* \mathsf{Parab}_k\right)$$

$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

$$\Delta \ : \ z \longmapsto \frac{z}{1-z} \ \in \mathsf{Parab}_1$$

■ Topological model for Parab₁

$$\Delta \ : \ z \longmapsto \frac{z}{1-z} \ \in \mathsf{Parab}_1$$

- Topological model for Parab₁
- Orbits laying on circles

$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

- Topological model for Parab₁
- Orbits laying on circles

$$\Delta \ : \ z \longmapsto^{\displaystyle \frac{z}{1-z}} \quad \in \mathsf{Parab}_1$$

 Δ time-1 flow of $z^2 \frac{\partial}{\partial z}$:

$$\dot{x}(t) = x(t)^{2}, x(0) = z$$
$$x(1) = \Delta(z)$$

$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

 Δ time-1 flow of $z^2 \frac{\partial}{\partial z}$:

$$\dot{x}(t) = x(t)^{2}, x(0) = z$$
$$x(1) = \Delta(z)$$

$$n \in \mathbb{Z}$$

$$\Delta^{\circ n}(z) = \frac{z}{1 - nz} = x(n)$$

$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

 Δ time-1 flow of $z^2 \frac{\partial}{\partial z}$:

$$\dot{x}(t) = x(t)^2$$
, $x(0) = z$
 $x(1) = \Delta(z)$

$$\alpha \in \mathbb{C}$$

$$\Delta^{\circ \alpha}(z) = \frac{z}{1 - \alpha z} = x(\alpha)$$

Definition

 $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ can be **embeded in a flow** $\iff \exists X \text{ holomorphic vector field on } (\mathbb{C},0): \Delta = \Phi^1_X$

Definition

 $\Delta\in \mathrm{Diff}\,(\mathbb{C},0)$ can be **embeded in a flow** $\iff \exists X \text{ holomorphic vector field on } (\mathbb{C},0):\Delta=\Phi^1_X$

Question

Can every $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ be embedded in a flow?

Definition

 $\Delta\in \mathrm{Diff}\,(\mathbb{C},0)$ can be **embeded in a flow** $\iff \exists X \text{ holomorphic vector field on } (\mathbb{C},0):\Delta=\Phi^1_X$

Question

Can every $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ be embedded in a flow?

Answer

No. Example of Baker (1962)

 $\exp -\mathrm{Id}$

Definition

 $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ can be **embeded in a flow** $\iff \exists X \text{ holomorphic vector field on } (\mathbb{C},0): \Delta = \Phi^1_{\mathbf{Y}}$

Lemma

Every $\Delta \in \mathrm{Diff}(\mathbb{C},0)$ can be embedded in a a **formal flow**:

$$\Delta = \Phi_{\widehat{X}}^1 \quad , \ \widehat{X} \in \mathbb{C}[[z]] \frac{\partial}{\partial z}$$

i.e. the power series

$$\sum_{n\in\mathbb{N}}\frac{t^n}{n!}\left(\widehat{X}\cdot^n\operatorname{Id}\right)=:\Phi_{\widehat{X}}^t$$

converges towards Δ on $(\mathbb{C},0)$ for t:=1

Theorem (Écalle, 1975)

For
$$\Delta = \Phi^1_{\widehat{X}} \in \mathsf{Parab}$$
 define

$$\Gamma_\Delta := \left\{ t \in \mathbb{C} \; : \; \Phi^t_{\widehat{X}} \; \mathsf{converges \; near} \; 0
ight\} < (\mathbb{C}, +)$$

Theorem (Écalle, 1975)

For $\Delta = \Phi^1_{\widehat{X}} \in \mathsf{Parab}$ define

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi_{\widehat{X}}^{t}\ ext{converges near 0}
ight\}<(\mathbb{C},+)$$

Theorem (Écalle, 1975)

For $\Delta = \Phi^1_{\widehat{X}} \in \mathsf{Parab}$ define

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi_{\widehat{X}}^{t}\ ext{converges near 0}
ight\}<(\mathbb{C},+)$$

- $oldsymbol{\Delta}$ can be embedded in a flow $\Longleftrightarrow \Gamma_{\Delta} = \mathbb{C}$

Theorem (Écalle, 1975)

For
$$\Delta = \Phi^1_{\widehat{X}} \in \mathsf{Parab}$$
 define

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi^t_{\widehat{X}} \ ext{converges near 0}
ight\}<\left(\mathbb{C},+
ight)$$

- $oldsymbol{eta}$ $oldsymbol{\Delta}$ can be embedded in a flow $\Longleftrightarrow oldsymbol{\Gamma}_{oldsymbol{\Delta}} = \mathbb{C}$
- \blacksquare Either $\Gamma_{\Delta}=\mathbb{C}$ or $\Gamma_{\Delta}=rac{1}{n}\mathbb{Z}$ pour $n\in\mathbb{N}_{>0}$

Theorem (Écalle, 1975)

For $\Delta = \Phi^1_{\widehat{X}} \in \mathsf{Parab}$ define

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi_{\widehat{X}}^{t}\ ext{converges near 0}
ight\}<(\mathbb{C},+)$$

- $oldsymbol{oldsymbol{oldsymbol{\Delta}}}$ can be embedded in a flow \Longleftrightarrow $oldsymbol{\Gamma}_{\Delta}=\mathbb{C}$
- \blacksquare Either $\Gamma_{\Delta}=\mathbb{C}$ or $\Gamma_{\Delta}=rac{1}{n}\mathbb{Z}$ pour $n\in\mathbb{N}_{>0}$

Remark

In general $\Gamma_{\Delta}=\mathbb{Z}$

In the following of the talk

$$\mathcal{P}:=\{\mathsf{all}\;\mathsf{such}\;\Delta\}$$

In the following of the talk

 ${\color{red} {\color{blue} {\bf 1}}} \ \Delta \in \mathsf{Parab}_1$

$$\mathcal{P}:=\{\mathsf{all}\;\mathsf{such}\;\Delta\}$$

In the following of the talk

- $oldsymbol{1}$ $\Delta \in \mathsf{Parab}_1$
- 2 $\Delta = \Phi_{\widehat{X}}^1$ with $\widehat{X} \in \mathbb{C}[[z]] \frac{\partial}{\partial z}$ formally conjugate to $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formally conjugate to $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\text{all such } \Delta\}$

In the following of the talk

- $oldsymbol{1}$ $\Delta \in \mathsf{Parab}_1$
- 2 $\Delta = \Phi_{\widehat{X}}^1$ with $\widehat{X} \in \mathbb{C}[[z]] \frac{\partial}{\partial z}$ formally conjugate to $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formally conjugate to $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\text{all such } \Delta\}$

Hypothesis on Δ

In the following of the talk

- $oxed{1} \Delta \in \mathsf{Parab}_1$
- 2 $\Delta = \Phi^1_{\widehat{X}}$ with $\widehat{X} \in \mathbb{C}\left[[z]\right] \frac{\partial}{\partial z}$ formally conjugate to $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formally conjugate to $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\text{all such } \Delta\}$

Model $z^5 \frac{\partial}{\partial z}$ for Parab₄

Hypothesis on Δ

In the following of the talk

- $oldsymbol{1}$ $\Delta \in \mathsf{Parab}_1$
- 2 $\Delta = \Phi_{\widehat{X}}^1$ with $\widehat{X} \in \mathbb{C}[[z]] \frac{\partial}{\partial z}$ formally conjugate to $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formally conjugate to $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\text{all such } \Delta\}$

Model $z^5 \frac{\partial}{\partial z}$ for Parab₄

Heuristics

Heuristics

Heuristics

Heuristics

Heuristics

Theorem (Birkhoff 1939-Écalle 1975-Voronin 1981)

The mapping:

$$\begin{array}{ccc} \mathrm{BEV} \,:\, \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ & \left[\Delta\right] \longmapsto \left[\left(\psi^{0},\psi^{\infty}\right)\right] \end{array}$$

is well defined and injective

Theorem (Birkhoff 1939-Écalle 1975-Voronin 1981)

The mapping:

$$\begin{array}{ccc} \mathrm{BEV} & : & \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ & & [\Delta] \longmapsto \left[\left(\psi^0, \psi^\infty \right) \right] \end{array}$$

is well defined and injective

Remark

Theorem (Birkhoff 1939-Écalle 1975-Voronin 1981)

The mapping:

$$\begin{array}{ccc} \mathrm{BEV} \,:\, \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ & \left[\Delta\right] \longmapsto \left[\left(\psi^{0},\psi^{\infty}\right)\right] \end{array}$$

is well defined and injective

Remark

1 $\psi^{0,\infty}$: horn maps

Theorem (Birkhoff 1939-Écalle 1975-Voronin 1981)

The mapping:

$$\begin{array}{ccc} \mathrm{BEV} \,:\, \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ & [\Delta] \longmapsto \left[\left(\psi^0, \psi^\infty \right) \right] \end{array}$$

is well defined and injective

Remark

- $\psi^{0,\infty}$: horn maps
- $\mathbf{2} \ \mathrm{BEV}\left(\frac{\mathrm{Id}}{1-\mathrm{Id}}\right) = (\mathrm{Id},\mathrm{Id})$

Lemma

 $\exp\left(2\mathrm{i}\pi\Gamma_{\Delta}\right)\simeq\mathit{Centre}\left(\Delta\right)$

Lemma $\exp\left(2\mathrm{i}\pi\Gamma_{\Delta}\right)\simeq extit{Centre}\left(\Delta
ight)$

Proof.

Lemma

 $\exp\left(2\mathrm{i}\pi\Gamma_{\Delta}\right)\simeq\mathit{Centre}\left(\Delta\right)$

Proof.

■ $g \in \mathsf{Centre}(\Delta) \text{ induces } g^* : \overline{\mathbb{C}} \xrightarrow{\simeq} \overline{\mathbb{C}} \mathsf{ fixing } \{0, \infty\}$

May 13th, 2023

Lemma

 $\exp\left(2\mathrm{i}\pi\Gamma_{\Delta}\right)\simeq\mathit{Centre}\left(\Delta\right)$

Proof.

- $lacksymbol{g} \in \mathsf{Centre}\left(\Delta\right) \ \mathsf{induces} \ g^* \ : \ \overline{\mathbb{C}} \stackrel{\simeq}{\longrightarrow} \overline{\mathbb{C}} \ \mathsf{fixing} \ \{0,\infty\}$
- $lacksquare g^*$: $h\mapsto ch$ for $c\in\mathbb{C}^ imes$ hence $g=\Phi_{\widehat{X}}^{rac{\log c}{2i\pi}}$

Corollary (Écalle, 1975)

Corollary (Écalle, 1975)

II If $\Gamma_{\Delta} \neq \mathbb{C}$ there exists $n \in \mathbb{N}_{>0}$ and $\varphi^{0,\infty} \in Holo\left(\overline{\mathbb{C}},0 \text{ or } \infty\right)$ such that

$$\psi^{0,\infty} = h \longmapsto h \varphi^{0,\infty}(h^n)$$
 and $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

Corollary (Écalle, 1975)

If $\Gamma_{\Delta} \neq \mathbb{C}$ there exists $n \in \mathbb{N}_{>0}$ and $\varphi^{0,\infty} \in Holo\left(\overline{\mathbb{C}}, 0 \text{ or } \infty\right)$ such that

$$\psi^{0,\infty} = h \longmapsto h \varphi^{0,\infty}(h^n)$$
 and $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

2 If $\Gamma_{\Delta} = \mathbb{C}$ then $\operatorname{BEV}(\Delta) = (\operatorname{Id}, \operatorname{Id})$

Corollary (Écalle, 1975)

I If $\Gamma_{\Delta} \neq \mathbb{C}$ there exists $n \in \mathbb{N}_{>0}$ and $\varphi^{0,\infty} \in Holo\left(\overline{\mathbb{C}}, 0 \text{ or } \infty\right)$ such that

$$\psi^{0,\infty} = h \longmapsto h \varphi^{0,\infty}(h^n)$$
 and $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

2 If $\Gamma_{\Delta} = \mathbb{C}$ then $\operatorname{BEV}(\Delta) = (\operatorname{Id}, \operatorname{Id})$

Proof.

Corollary (Écalle, 1975)

I If $\Gamma_{\Delta} \neq \mathbb{C}$ there exists $n \in \mathbb{N}_{>0}$ and $\varphi^{0,\infty} \in Holo\left(\overline{\mathbb{C}}, 0 \text{ or } \infty\right)$ such that

$$\psi^{0,\infty} = h \longmapsto h \varphi^{0,\infty}(h^n)$$
 and $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

2 If $\Gamma_{\Delta} = \mathbb{C}$ then $\operatorname{BEV}(\Delta) = (\operatorname{Id}, \operatorname{Id})$

Proof.

• $t \in \Gamma_{\Delta} \longmapsto c := \exp(2i\pi t) \in \text{Centre}(\Delta) \text{ with } c\psi(h) = \psi(ch)$

Corollary (Écalle, 1975)

I If $\Gamma_{\Delta} \neq \mathbb{C}$ there exists $n \in \mathbb{N}_{>0}$ and $\varphi^{0,\infty} \in Holo\left(\overline{\mathbb{C}}, 0 \text{ or } \infty\right)$ such that

$$\psi^{0,\infty} = h \longmapsto h \varphi^{0,\infty}(h^n)$$
 and $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

2 If $\Gamma_{\Delta} = \mathbb{C}$ then $\operatorname{BEV}(\Delta) = (\operatorname{Id}, \operatorname{Id})$

Proof.

- $t \in \Gamma_{\Delta} \longmapsto c := \exp(2i\pi t) \in \text{Centre}(\Delta) \text{ with } c\psi(h) = \psi(ch)$
- $\psi(h) = h \sum_{p>0} \alpha_p h^p$ with $\alpha_0 \neq 0$:

$$\alpha_p \neq 0 \Longrightarrow c^p = 1$$

Inverse problem

Inverse problem

Inverse problem

Surjectivity of BEV?

May 13th, 2023

Inverse problem

Inverse problem

Surjectivity of BEV?

Theorem (Écalle-Voronin)

The mapping

$$\begin{array}{ccc} \mathrm{BEV} \,:\, \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ & [\Delta] \longmapsto \left[\left(\psi^0, \psi^\infty \right) \right] \end{array}$$

is bijective

1 We start with $\mathbb{C}^{\times}\coprod\mathbb{C}^{\times}/_{(\psi^{0},\psi^{\infty})}$, to be synthesized

- **1** We start with $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^{0},\psi^{\infty})}$, to be synthesized
- 2 We equip V^{\pm} with $x^2 \frac{\partial}{\partial x}$ and the orbits coordinate

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$
$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

- **1** We start with $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^{0},\psi^{\infty})}$, to be synthesized
- 2 We equip V^{\pm} with $x^2 \frac{\partial}{\partial x}$ and the orbits coordinate

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$
$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

3 The manifold V is obtained by gluing V^+ and V^- in H-space by $\left(\psi^0,\psi^\infty\right)$

- 1 We start with $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^0,\psi^{\infty})}$, to be synthesized
- 2 We equip V^{\pm} with $x^2 \frac{\partial}{\partial x}$ and the orbits coordinate

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$
$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

- 3 The manifold V is obtained by gluing V^+ and V^- in H-space by (ψ^0,ψ^∞)
- $\Phi^1_{\chi^2 rac{\partial}{\partial \chi}}|_{V^\pm}$ acts on V

- 1 We start with $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^0,\psi^{\infty})}$, to be synthesized
- 2 We equip V^{\pm} with $x^2 \frac{\partial}{\partial x}$ and the orbits coordinate

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$

$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

- 3 The manifold V is obtained by gluing V^+ and V^- in H-space by (ψ^0,ψ^∞)
- $\Phi^1_{\chi^2 rac{\partial}{\partial x}}|_{V^\pm}$ acts on V
- **5** Ahlfors-Bers: $V \simeq (\mathbb{C},0)$ together with $\Delta \in \mathcal{P}$

Technical points

Technical points

- \blacksquare "The manifold V is obtained by gluing V^+ and V^- in H-space by (ψ^0,ψ^∞) "
 - \longrightarrow Need to control the size of $H(V^+ \cap V^-)$
 - \longrightarrow Constraint on the size of $V^+ \cap V^- \cap (\mathbb{C},0)$

Technical points

- "The manifold V is obtained by gluing V^+ and V^- in H-space by (ψ^0, ψ^∞) "
 - \longrightarrow Need to control the size of $H\left(V^{+}\cap V^{-}\right)$
 - \longrightarrow Constraint on the size of $V^+ \cap V^- \cap (\mathbb{C},0)$
- lacksquare "Ahlfors-Bers: $V\simeq (\mathbb{C},0)$ together with $\Delta\in\mathcal{P}$ "
 - \longrightarrow No control on the «shape» of Δ
 - →No privileged choice (normal form)

Gluing size: rational maps

Gluing size: rational maps

Theorem (Epstein, 1993)

Let R be a rational map, with a parabolic fixed-point at 0 and Julia $(R) \neq \emptyset$. Then BEV (R) has a continuation frontier.

Spherical normal forms

Spherical normal forms

Theorem

Being given (ψ^0, ψ^∞) , for every small enough $\lambda > 0$ there exists a <u>unique</u> power series $F \in z\mathbb{C}[[z]]$ satisfying the next properties. Set

$$X_0(z) := \frac{\lambda z^2}{1+z^2} \frac{\partial}{\partial z}$$
 , $\widehat{X} := \frac{1}{1+X_0 \cdot F} X_0$

Spherical normal forms

Theorem

Being given (ψ^0, ψ^∞) , for every small enough $\lambda > 0$ there exists a <u>unique</u> power series $F \in z\mathbb{C}[[z]]$ satisfying the next properties. Set

$$X_0(z) := \frac{\lambda z^2}{1+z^2} \frac{\partial}{\partial z}$$
 , $\widehat{X} := \frac{1}{1+X_0 \cdot F} X_0$

lacksquare $\Delta:=\Phi^1_{\widehat{X}}\in\mathcal{P}$ and

BEV
$$(\Delta) = (\psi^0, \psi^\infty)$$

Spherical normal forms

Theorem

Being given (ψ^0, ψ^∞) , for every small enough $\lambda > 0$ there exists a <u>unique</u> power series $F \in z\mathbb{C}[[z]]$ satisfying the next properties. Set

$$X_0(z) := \frac{\lambda z^2}{1+z^2} \frac{\partial}{\partial z}$$
 , $\widehat{X} := \frac{1}{1+X_0 \cdot F} X_0$

 $oldsymbol{lack} \Delta := \Phi^1_{\widehat{X}} \in \mathcal{P}$ and

$$BEV(\Delta) = (\psi^0, \psi^\infty)$$

2 The power series F is 1-summable with 1-sum (f^+, f^-) holomorphic and bounded by 1 on the infinite sectors

$$V^{\pm}:=\left\{z
eq0\ :\ \left|\mathrm{arg}\left(\pm z
ight)
ight|<rac{5\pi}{8}
ight\}$$

The infinite sectors

lacksquare Start with $\left(\psi^{0},\psi^{\infty}
ight)$ and write $\psi^{0,\infty}\left(h
ight)=h\exparphi^{0,\infty}\left(h
ight)$

- Start with $\left(\psi^{0},\psi^{\infty}\right)$ and write $\psi^{0,\infty}\left(h\right)=h\exparphi^{0,\infty}\left(h\right)$
- lacksquare For $f:=(f^-,f^+)$ holomorphic on V^\pm and continuous on $\overline{V^\pm}$ define

$$H(z) := \exp\left(-2\mathrm{i}\pi\frac{1-z^2}{\lambda z} + 2\mathrm{i}\pi f^+(z)\right)$$

and $\Lambda(f) = (\Lambda^-, \Lambda^+)$ by

$$\frac{2\mathrm{i}\pi}{\sqrt{z}}\,\Lambda^{\pm}\left(z\right):=\int_{a^{\pm}}\frac{\varphi^{0}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi-\int_{b^{\pm}}\frac{\varphi^{\infty}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi$$

- Start with (ψ^0, ψ^∞) and write $\psi^{0,\infty}(h) = h \exp \varphi^{0,\infty}(h)$
- lacksquare For $f:=(f^-,f^+)$ holomorphic on V^\pm and continuous on $\overline{V^\pm}$ define

$$H(z) := \exp\left(-2\mathrm{i}\pi\frac{1-z^2}{\lambda z} + 2\mathrm{i}\pi f^+(z)\right)$$

and $\Lambda(f) = (\Lambda^-, \Lambda^+)$ by

$$\frac{2\mathrm{i}\pi}{\sqrt{z}}\,\Lambda^{\pm}\left(z\right):=\int_{a^{\pm}}\frac{\varphi^{0}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi-\int_{b^{\pm}}\frac{\varphi^{\infty}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi$$

- Start with $\left(\psi^{0},\psi^{\infty}\right)$ and write $\psi^{0,\infty}\left(h\right)=h\exparphi^{0,\infty}\left(h\right)$
- lacksquare For $f:=(f^-,f^+)$ holomorphic on V^\pm and continuous on $\overline{V^\pm}$ define

$$H(z) := \exp\left(-2i\pi\frac{1-z^2}{\lambda z} + 2i\pi f^+(z)\right)$$

and
$$\Lambda(f) = (\Lambda^-, \Lambda^+)$$
 by

$$\frac{2\mathrm{i}\pi}{\sqrt{z}}\,\Lambda^{\pm}\left(z\right):=\int_{a^{\pm}}\frac{\varphi^{0}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi-\int_{b^{\pm}}\frac{\varphi^{\infty}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi$$

$$1 \quad \Lambda_f^- - \Lambda_f^+ = \begin{cases} \varphi^0 \circ H & \text{on } V^0 \\ \varphi^\infty \circ H & \text{on } V^\infty \end{cases}$$

2
$$||\Lambda(f_2) - \Lambda(f_1)|| \le \lambda^2 C(\varphi) ||f_1 - f_2||$$

- Start with (ψ^0, ψ^∞) and write $\psi^{0,\infty}(h) = h \exp \varphi^{0,\infty}(h)$
- lacksquare For $f:=(f^-,f^+)$ holomorphic on V^\pm and continuous on $\overline{V^\pm}$ define

$$H(z) := \exp\left(-2i\pi\frac{1-z^2}{\lambda z} + 2i\pi f^+(z)\right)$$

and $\Lambda(f) = (\Lambda^-, \Lambda^+)$ by

$$\frac{2\mathrm{i}\pi}{\sqrt{z}}\,\Lambda^{\pm}\left(z\right):=\int_{a^{\pm}}\frac{\varphi^{0}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi-\int_{b^{\pm}}\frac{\varphi^{\infty}\left(H\left(\xi\right)\right)}{\sqrt{\xi}\left(\xi-z\right)}\mathrm{d}\xi$$

$$||\Lambda(f_2) - \Lambda(f_1)|| \leq \lambda^2 C(\varphi) ||f_1 - f_2||$$

size of
$$H(V^+ \cap V^-) = O(e^{-1/\lambda})$$

Dynamics of
$$\Delta = \Phi^1_{\widehat{X}_+}$$

 Δ holomorphic and injective on $V^+ \setminus \gamma$

 Δ defines a «companion» dynamics near ∞

 Δ defines a «companion» dynamics near ∞

Proposition

$$\mathrm{BEV}_{\infty}\left(\Delta\right) = \mathrm{BEV}_{0}\left(\Delta\right)^{\circ -1}$$

 Δ defines a «companion» dynamics near ∞

Proposition

$$\mathrm{BEV}_{\infty}\left(\Delta\right) = \mathrm{BEV}_{0}\left(\Delta\right)^{\circ-1}$$

Proof.

Recall $\Lambda = (\Lambda^-, \Lambda^+)$. Then

$$\Lambda\left(\frac{-1}{z}\right) = -\left(\Lambda^{+}\left(z\right), \Lambda^{-}\left(z\right)\right)$$

Écalle (2005) built **spherical normal forms** with very similar properties

«As already pointed out, our twisted monomials have much the same behavior at both poles of the Riemann sphere. The exact correspondence has just been described [...] using the so-called antipodal involution: in terms of the objects being produced, this means that canonical object synthesis automatically generates two objects: the "true" object, local at 0 and with exactly the prescribed invariants, and a "mirror reflection", local at ∞ and with closely related invariants. Depending on the nature of the [...] invariants (verification or non-verification of an "overlapping condition"), these two objects may or may not link up under analytic continuation on the Riemann sphere.»

$$\Delta \in \mathsf{Parab} \longmapsto \psi^0 \in \mathsf{Parab}$$

$$\Delta \in \mathsf{Parab} \longmapsto \psi^0 \in \mathsf{Parab}$$

Corollary

Being given $\psi \in {\sf Parab}$, there exists a unique normal form $\Delta \in {\cal P}$ such that

$$BEV(\Delta) = (\Delta, \psi)$$

$$\Delta \in \mathsf{Parab} \longmapsto \psi^0 \in \mathsf{Parab}$$

Corollary

Being given $\psi \in \mathsf{Parab}$, there exists a unique normal form $\Delta \in \mathcal{P}$ such that

$$BEV(\Delta) = (\Delta, \psi)$$

Remark

Near ∞ we have

$$\mathrm{BEV}_{\infty}\left(\Delta\right) = \left(\Delta^{\circ - 1}, \psi^{\circ - 1}\right)$$