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Context

Local holomorphic dynamical systems on the Riemann sphere C

Dynamics of parabolic fixed-points of germs A € Diff (C, 0)
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Why parabolic fixed-points?

A:z—az+-- ,aecC”

a ¢ S*: locally linearizable
Jp € Diff (C,0) : ¢*A = cp_l oAoyp = ald

m — Fatou if |o| < 1 (attracting fixed-point)
m — Julia if |a > 1 (repelling fixed-point)
a e Sk
m locally linearizable <= A stable i.e. U neigh. of 0: A(U) C U
— Fatou (Siegel's disks...)
m else: numerous local classes e.g.

{z—z+} /pin(c.o) ~ @D Diff (C,0)
N
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A € Parab :={z+—z+---}\ {Id}
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Parabolic germs (=tangent-to-identity)

A € Parab :={z+—z+---}\ {Id}

Stratification by the order of tangency to Id
u

Parab = H Parab,
keNso

= H {z>—>z+*zk+1+~~ , *E(CX}
keNso

m k > 1 topological invariant: number of attracting petals

Paraby = Parab N (Homeo™ (C,0)" Paraby)
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Flow embedding

Definition
A € Diff (C,0) can be embeded in a flow
<= 3X holomorphic vector field on (C,0) : A = ¢L

Question
Can every A € Diff (C,0) be embedded in a flow?

Answer
No. Example of Baker (1962)

exp —1Id
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Flow embedding

Definition
A € Diff (C,0) can be embeded in a flow
<= 3X holomorphic vector field on (C,0) : A = ¢

Lemma
Every A € Diff (C,0) can be embedded in a a formal flow:
A =L f<e<c[[z]]3
’ 0z

X

i.e. the power series

converges towards A on (C,0) fort :=1
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Theorem (Ecalle, 1975)
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Ma = {t € C : & converges near 0} <(C,+)

Loic Teyssier (Université de Strasbourg) = May 13'%, 2023



Spherical normal forms of parabolic fixed-points in C

Flow embedding

Theorem (Ecalle, 1975)
For A = d>}( € Parab define

A= {t eC : CDEA( converges near 0} <(C,+)

(3f € Diff (C,0), a € C* : f*=A) <= Lelpand f =0/

Loic Teyssier (Université de Strasbourg) | May 13'}



Spherical normal forms of parabolic fixed-points in C

Flow embedding

Theorem (Ecalle, 1975)
For A = d>}( € Parab define

A= {t eC : CDEA( converges near 0} <(C,+)

(3f € Diff (C,0), a € C* : f*=A) <= Lelpand f =0/
A can be embedded in a flow <= A =C

Loic Teyssier (Université de Strasbourg) | May 13'}



Spherical normal forms of parabolic fixed-points in C

Flow embedding

Theorem (Ecalle, 1975)
For A = d>}( € Parab define

A= {t eC : cb;? converges near 0} < (C,+)
(3f € Diff (C,0), a € C* : f*=A) <= Lelpand f =0/

A can be embedded in a flow <= Th =C
Either TA =Corla = %Z pour n € Nyp

Loic Teyssier (Université de Strasbourg) | May 13'}



Spherical normal forms of parabolic fixed-points in C

Flow embedding

Theorem (Ecalle, 1975)
For A = d>}( € Parab define

A= {t eC : cb;? converges near 0} < (C,+)
(3f € Diff (C,0), a € C* : f*=A) <= Lelpand f =0/

A can be embedded in a flow <= Th =C
Either TA =Corla = %Z pour n € Nyp

Remark

In general TpA =7Z
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Quotient P /pig(c.0)

Heuristics

conformal class of A = conformal class of orbits space of A

—— fundamental domain

orbits space
RN
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Quotient P /pig(c.0)

Theorem (Birkhoff 1939-Ecalle 1975-Voronin 1981)
The mapping:

BEV : P/pig(c,0) — Parab x Parab/cx
[A] — [(4°,9%)]

is well defined and injective
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Quotient P /pig(c.0)

Theorem (Birkhoff 1939-Ecalle 1975-Voronin 1981)
The mapping:

BEV : P/pig(c,0) — Parab x Parab/cx
[A] — [(4°,9%)]

is well defined and injective

Remark

1%%°: horn maps

BEV (%) = (1d,1d)
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Application: embedding in a flow

Lemma
exp (2inTp) ~ Centre(A)

Proof.

m g € Centre (A) induces g* : C — C fixing {0, 00}
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Application: embedding in a flow

Lemma

exp (2inTp) ~ Centre(A)

Proof.

m g € Centre(A) induces g* : C — C
=¢2

mg* : h— chforceC* henceg

fixing {0, 00}

Iog c

><>m

O
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Application: embedding in a flow

Corollary (Ecalle, 1975)

IfTa # C there exists n € Nsq and ©%°° € Holo (C,0 or c0) such
that

1
PO = hi—h O (h") and Tp=-7Z
n

IfTp = C then BEV (A) = (Id, Id)

Proof.
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Application: embedding in a flow

Corollary (Ecalle, 1975)

IfTa # C there exists n € Nsq and ©%°° € Holo (C,0 or c0) such
that

1
PO = hi—h O (h") and Tp=-7Z
n

IfTp = C then BEV (A) = (Id, Id)

Proof.

mtelar— c:=exp(2int) € Centre (A) with cip (h) = (ch)
m 1 (h) =h3 50 aph? with ag # O:

ap#0=c" =1
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Inverse problem

Inverse problem
Surjectivity of BEV?

Theorem (Ecalle-Voronin)

The mapping

BEV : P/pig(c,0) — Parab x Parab/cx
[A] — [(v°,9>)]

is bijective
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Inverse problem: «abstracty realization

We start with C* HCX/(¢O’wm), to be synthesized
We equip V* with xz% and the orbits coordinate

H : vt _— C*

—2iT
X — h = exp

The manifold V is obtained by gluing V' and V'~ in H-space by
(v°,4>)
L, |y+ actson V
X" ox

Ahlfors-Bers: V ~ (C,0) together with A € P
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Inverse problem: «abstracty realization

Technical points

® "The manifold V is obtained by gluing V* and V'~ in H-space by (¢°,4>)"

—Need to control the size of H (VTN V™)
—Constraint on the size of V' N V™ N (C,0)

orbits space
—_—>

Loic Teyssier (Université de Strasbourg) = May 13'%, 2023




Spherical normal forms of parabolic fixed-points in C

Inverse problem: «abstracty realization

Technical points

® "The manifold V is obtained by gluing V™ and V™ in H-space by (wo,w‘x’)”
—Need to control the size of H (VTN V™)
—Constraint on the size of V' N V™ N (C,0)

m "Ahlfors-Bers: V ~ (C,0) together with A € P

—No control on the «shape» of A
—No privileged choice (normal form)

orbits space
—_—>

Loic Teyssier (Université de Strasbourg) = May 13'%, 2023




Spherical normal forms of parabolic fixed-points i

Gluing size: rational maps

Loiic Teyssier (Université de Strasbourg) | May 13" 2023



Spherical normal forms of parabolic fixed-points in C

Gluing size: rational maps

Theorem (Epstein, 1993)

Let R be a rational map, with a parabolic fixed-point at 0 and
Julia (R) # 0. Then BEV (R) has a continuation frontier.

0 A/wo\ 0
| -, &

orbits space 4
—_— H(J)

\

H

<o @

0 TS o
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Theorem

Being given (wo, zboo), for every small enough \ > 0 there exists a unique
power series F € zC [[z]] satisfying the next properties. Set
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Spherical normal forms

Theorem

Being given (wo, zboo), for every small enough \ > 0 there exists a unique
power series F € zC [[z]] satisfying the next properties. Set

A::cb}(epand

BEV (A) = (¢°,¢™)
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Spherical normal forms

Theorem

Being given (wo, zboo), for every small enough \ > 0 there exists a unique
power series F € zC [[z]] satisfying the next properties. Set

A= cb}( € P and
BEV (A) = (¢°, ¢™)

The power series F is 1-summable with 1-sum (f*,f~) holomorphic
and bounded by 1 on the infinite sectors

vE = {z #0 : |arg(£2)| < 587T}
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The infinite sectors
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Some innards

m Start with (¢°,9°°) and write /%> (h) = hexp ¢*> (h)
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Some innards

m Start with (¢°,9°°) and write /%> (h) = hexp ¢*> (h)

m For f := (f~, fT) holomorphic on V* and continuous on V* define

. 1-— Z2 . L
H(z) :==exp | —2im + 2inf™ (2)

and A(f) = (A—,AT) by

2Am ° (H ()

o< (H(9))
ZN@= ) Fe—a 4

W o Ve —2)

3

Then:
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m For f := (f~, fT) holomorphic on V* and continuous on V* define

. 1-— Z2 . L
H(z) :==exp | —2im + 2inf™ (2)

and A(f) = (A—,AT) by
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3

Then:
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Some innards

m Start with (¢°,9°°) and write /%> (h) = hexp ¢*> (h)

m For f := (f~, fT) holomorphic on V* and continuous on V* define

. 1-— Z2 . L
H(z) :==exp | —2im + 2inf™ (2)

and A(f) = (A—,AT) by

2im PHE) 4o _ [ $Z(HE)
MO e e vEE- "
Then:
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Some innards

m Start with (¢°,9°°) and write /%> (h) = hexp ¢*> (h)

m For f := (f~, fT) holomorphic on V* and continuous on V* define

. 1-— Z2 . L
H(z) :==exp | —2im + 2inf™ (2)

and A(f) = (A—,AT) by

2im PHE) 4o _ [ $Z(HE)
MO e e vEE- "
Then:
@A A= @WwWoH on VO

p>®oH on V™
IN(R) = A(R)]] < N2C () | — £
m AT =0¢! , | matchin VI NV < f=A(f)

Txg-fE 70
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A quasi-global dynamics
Dynamics of Xy = (ﬁ)* (xzi)

1—1d2

size of H(VYN V™) =0 (e?)
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A quasi-global dynamics

: 1
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A quasi-global dynamics
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Spherical normal forms of parabolic fixed-points

A quasi-global dynamics

Dynamics of A = ¢L
Xy
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A quasi-global dynamics

Dynamlcs of A = <D1

A holomorphlc and injective on V+\’y
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Spherical normal forms of parabolic fixed-points

Antipodal dynamics

A defines a «companion» dynamics near oo
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Antipodal dynamics

A defines a «companion» dynamics near oo

Proposition

BEV, (A) = BEV, (A)°!
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Spherical normal forms of parabolic fixed-points in C

Antipodal dynamics

A defines a «companion» dynamics near oo

Proposition

BEV, (A) = BEV, (A)°!

Proof.
Recall A = (A=,A"). Then
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Antipodal dynamics

Ecalle (2005) built spherical normal forms with very similar properties

«As already pointed out, our twisted monomials have much the same
behavior at both poles of the Riemann sphere. The exact correspondence
has just been described [...] using the so-called antipodal involution: in
terms of the objects being produced, this means that canonical object
synthesis automatically generates two objects: the “true” object, local at 0
and with exactly the prescribed invariants, and a “mirror reflection”, local at
oo and with closely related invariants. Depending on the nature of the [...]
invariants (verification or non-verification of an “overlapping condition”),
these two objects may or may not link up under analytic continuation on
the Riemann sphere.»
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Application: parabolic renormalization fixed-point
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Application: parabolic renormalization fixed-point

A € Parab — ¢° € Parab
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Application: parabolic renormalization fixed-point

A € Parab — ¢° € Parab

Corollary

Being given 1) € Parab, there exists a unique normal form A € P such
that

BEV(A) = (A,¢)
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Spherical normal forms of parabolic fixed-points in C

Application: parabolic renormalization fixed-point

A € Parab — ¢° € Parab

Near oo we have

Corollary
Being given 1) € Parab, there exists a unique normal form A € P such
that
BEV (A) = (A,¢)
Remark

BEV (A) = (A°71, ¢
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